Residue currents of coherent sheaves via superconnections

Zhaoting Wei

East Texas A&M University

Geometry and Geometric Analysis Seminar Texas Christian University 02.04.2025

Residue currents

Residue currents of functions

Residue current of a complex of vector bundles

A B < A B </p>

The topological space $\Omega_c^{p,q}(X)$

- Let *X* be an *n*-dimensional complex manifold.
- Let Ω^{p,q}_c(X) be the space of compactly supported (p, q)-forms on X, equipped with the usual topology given as follows:
- We say $\omega_n \to \omega$ if for any coordinate chart U and any multi-index α we have

$$||\partial^{\alpha}\omega_n - \partial^{\alpha}\omega|| \to 0$$

on U.

< 回 > < 三 > < 三 >

Review of currents

- A (p,q)-current on X is a continuous linear map from $\Omega_c^{n-p,n-q}(X)$ to \mathbb{C} .
- We denote the set of (p,q)-currents on X by $\mathcal{D}^{p,q}(X)$.
- Examples of currents:
 - If $\omega = \sum_{|I|=p,|J|=q} f_{IJ} dz^I \wedge d\overline{z}^J$ where f_{IJ} is a *locally integrable* function on *X*, then

$$\omega(\theta) := \int_X \omega \wedge \theta, \ \forall \theta \in \Omega^{n-p,n-q}_c(X)$$

defines a (p,q)-current on X.

• If Z is a subvariety of codimension p, then

$$[Z](\theta) := \int_{Z} \theta, \ \forall \theta \in \Omega^{n-p,n-p}_{c}(X)$$

defines a (p, p)-current on X.

New currents from old ones

- We can extend operations on differential forms to operations on currents by *duality*.
- Let $T \in \mathcal{D}^{p,q}(X)$ be a (p,q)-current on X. We can define a (p,q+1)-current $\bar{\partial}T$ as

$$\bar{\partial}T(\theta) := (-1)^{p+q+1}T(\bar{\partial}\theta), \ \forall \theta \in \Omega_c^{n-p,n-q-1}(X).$$

We can define ∂T in a similar way.

• It is compatible with the $\bar{\partial}$ -operation on $\Omega^{\bullet,\bullet}(X)$ because for $\omega \in \Omega^{p,q}(X)$ considered as a current as before, we have $0 = \int_X \bar{\partial}(\omega \wedge \theta) = \int_X (\bar{\partial}\omega) \wedge \theta + (-1)^{p+q} \int_X \omega \wedge \bar{\partial}\theta.$

< ロ > < 同 > < 三 > < 三 > -

New currents from old ones (cont'd)

• For a $\omega \in \Omega^{s,t}(X)$ and $T \in \mathcal{D}^{p,q}(X)$, we can define a current $\omega \wedge T \in \mathcal{D}^{p+s,q+t}(X)$ as $(\omega \wedge T)(\theta) := (-1)^{(s+t)(p+q)}T(\omega \wedge \theta), \ \forall \theta \in \Omega^{n-p-s,n-q-t}_c(X).$

We can define $T \wedge w$ in a similar way.

- In general we cannot define the wedge product of two currents.
- We have an inclusion of cochain complexes $(\Omega^{\bullet,\bullet}(X),\bar{\partial}) \hookrightarrow (\mathcal{D}^{\bullet,\bullet}(X),\bar{\partial}).$
- Elliptic regularity theory: The above inclusion is a quasi-isomorphism, i.e. we can compute the Dolbeault cohomology of X by currents.

Holomorphic function and Poincaré-Lelong formula

- Let *f* be a generically nonvanishing holomorphic function on *X*.
- Let Z_f be the zero locus of f hence we have a (1, 1)-current $[Z_f]$.
- $\log |f|^2$ is locally integrable.
- Hence we can define a (1, 1)-current $\bar{\partial}\partial \log |f|^2$.

Theorem (Poincaré-Lelong formula)

We have an equality of currents

$$\frac{1}{2\pi i}\bar{\partial}\partial \log|f|^2 = [Z_f].$$

More on Poincaré-Lelong formula

- We know that $\bar{\partial}\partial = -\partial\bar{\partial}$.
- For a holomorphic function f, we have $\bar{\partial}f = 0$, $\partial \bar{f} = 0$, hence

$$\bar{\partial}\partial f = 0$$
 and $\bar{\partial}\partial \bar{f} = 0$.

Conceptually we have

$$\begin{split} \bar{\partial}\partial \log |f|^2 &= \bar{\partial}\partial (\log f + \log \bar{f}) = \bar{\partial}(\frac{\partial f}{f} + \frac{\partial \bar{f}}{\bar{f}}) \\ &= \bar{\partial}(\frac{1}{f}) \wedge \partial f + 0 = \bar{\partial}(\frac{1}{f}) \wedge df. \end{split}$$

Problem

In general $\frac{1}{f}$ is not locally integrable, so $\frac{1}{f}$ and $\bar{\partial}(\frac{1}{f})$ are not currents on X in the naive sense.

Residue current of a function

• [Dolbeault, 1971] and [Herrera and Lieberman, 1971] solved this problem by defining the **principle value current** $\frac{1}{f}$ and the **residue current** $\bar{\partial}(\frac{1}{f})$ as

$$(\frac{1}{f})(\omega) := \lim_{\epsilon \to 0} \int_{|f| > \epsilon} \frac{\omega}{f}, \text{ and } \bar{\partial}(\frac{1}{f})(\psi) := \lim_{\epsilon \to 0} \int_{|f| = \epsilon} \frac{\psi}{f}$$

for a testing 2n-form ω and (2n-1)-form ψ .

• $\bar{\partial}(\frac{1}{f})$ is a well-defined (0, 1)-current, which we also denote by R_f .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

A baby example

- Let $X = \mathbb{C}$ and f = z.
- If we write the testing (1,0)-form θ as $\theta = s(z)dz$, then a polar coordinate computation shows $\frac{1}{2\pi i}\bar{\partial}(\frac{1}{z})(\theta) = s(0)$.
- For a testing function s(z) we have $\frac{1}{2\pi i}\bar{\partial}(\frac{1}{z})\wedge(dz)(s(z)) = \frac{1}{2\pi i}\bar{\partial}(\frac{1}{z})(s(z)\wedge dz) = s(0).$
- On the other hand $Z_f = \{0\}$
- We checked $\bar{\partial}(\frac{1}{z})\wedge(dz)=\bar{\partial}\partial\log|z|^2$ and Poincaré-Lelong formula by hand.

Proposition (Duality principle)

A holomorphic function g on X is a multiple of f if and only if $g\overline{\partial}(\frac{1}{f}) = 0$ as a current.

- In the case $X = \mathbb{C}$ and f = z, the duality principle says: g(z) is a multiple of z if and only if g(0) = 0.
- The proof of the results in [Dolbeault, 1971] and [Herrera and Lieberman, 1971] in the general case depends on *Hironaka's desingularization theorem.*

Residue current of a collection of functions

- Let $f = (f_1, \dots, f_m)$ be a collection of holomorphic functions.
- A path $\epsilon(t) = (\epsilon_1(t), \dots, \epsilon_m(t))$ in \mathbb{C}^m is called *admissible* if $\lim_{t \to 0} \epsilon_m(t) = 0, \text{ and } \lim_{t \to 0} \frac{\epsilon_j(t)}{(\epsilon_{j+1}(t))^q} = 0, \ j = 1, \dots, m-1,$

for any positive integer q.

- [Coleff and Herrera, 1978]: We can define the residue current R_f of f as $R_f(\psi) := \lim_{t \to 0} \int_{|f_1| = \epsilon_1(t), \dots, |f_m| = \epsilon_m(t)} \frac{\psi}{f_1 \cdot \dots \cdot f_m}$ where $\epsilon(t) = (\epsilon_1(t), \dots, \epsilon_m(t))$ is an admissible path and ψ is a test (2n m)-form.
- R_f is a well-defined (0, m)-current. Heuristically we can consider it as the (noncommutative) wedge product $R_f = \bar{\partial}(\frac{1}{f_1}) \wedge \ldots \wedge \bar{\partial}(\frac{1}{f_m})$.

く 伺 とう きょう とう とう

Review: currents valued in vector bundles

Let *E* be a C^{∞} -vector bundle on *X* with dual bundle E^* .

- A (p,q)-current valued in *E* is a continuous linear map from $\Omega_c^{n-p,n-q}(X, E^*)$ to \mathbb{C} .
- A (p,q)-current valued in $\operatorname{End}(E)$ is a continuous linear map from $\Omega_c^{n-p,n-q}(X,\operatorname{End}(E))$ to \mathbb{C} .
- We can define wedge products, differential operators, traces, etc. on bundle-valued current as before.

Complexes of holomorphic vector bundles and minimal right inverse

[Andersson and Wulcan, 2007]

Let

$$\xi: 0 \to E_{-N} \xrightarrow{\phi_{-N}} E_{-N+1} \xrightarrow{\phi_{-N+1}} \dots \xrightarrow{\phi_{-1}} E_0 \to 0$$

be a bounded complex of holomorphic vector bundles.

- We equip each E_i with a Hermitian metric.
- For each i = −1,...,−N, let σ_i : E_{i+1} → E_i be the minimal right inverse of φ_i.
- Minimal right inverse is defined by the following properties:

 $\phi_i \sigma_i |_{\mathsf{im}\phi_i} = \mathsf{id}_{\mathsf{im}\phi_i}, \ \sigma_i |_{(\mathsf{im}\phi_i)^{\perp}} = 0, \text{ and } \mathsf{im}\sigma_i \bot \ker \phi_i \Rightarrow \sigma_{i-1}\sigma_i = 0.$

Minimal right inverse exists.

Minimal right inverse: an example

- $\underline{\mathbb{C}}^m$ the *m*-dimensional trivial vector bundle on *X* equipped with the standard Hermitian metric.
- A map $\phi : \mathbb{C}^m \to \mathbb{C}$ is given by $\phi = (f_1, \dots, f_m)$ where f_1, \dots, f_m are C^{∞} -functions on X.
- If all f_i 's are identically 0 on X, then the maximal rank of im ϕ is 0, hence $Z = \emptyset$ and $\sigma \equiv 0$.
- If some f_i 's are not identically 0 on *X*, then the maximal rank of im ϕ is 1, hence $Z = \{x \in X | f_1(x) = \ldots = f_m(x) = 0\}$ and

$$\sigma(x) = \begin{cases} 0 & x \in Z \\ \\ \frac{1}{\sum_{i=1}^{m} |f_i|^2} \begin{pmatrix} \overline{f_1} \\ \dots \\ \overline{f_m} \end{pmatrix} & x \in X \setminus Z. \end{cases}$$

Minimal right inverse: properties

- σ_i could be singular, i.e., it could go to ∞ .
- Let Z be the union of all singular locus of the σ_i's. Z has positive codimension in X.
- We are mostly interested in the case that ξ is acyclic on $X \setminus Z$.
- $\bar{\partial}\sigma_i$ may be nonzero, even when restricted to $X \setminus Z$.
- Notation

$$E^{\bullet} := \bigoplus_{i=-N}^{-1} E_i,$$

$$\phi := \phi_{-N} + \phi_{-N+1} + \dots + \phi_{-1},$$

$$\sigma := \sigma_{-N} + \sigma_{-N+1} + \dots + \sigma_{-1}.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The preimage problem

• If ξ is acyclic, then we can check $\sigma \phi + \phi \sigma = id_{E^{\bullet}}$.

Question

If ξ is acyclic, then for $e \in E_0$ a holomorphic section, can we find a holomorphic element $x \in E_{-1}$ such that

$$\phi x = e?$$

• Naive answer: $x = \sigma e$, hence

$$\phi x = \phi \sigma e = (\sigma \phi + \phi \sigma)e = e.$$

• Problem: *x* is not holomorphic.

• = • •

The construction of *u*

• On $X \setminus Z$ we define the $End(E^{\bullet})$ -valued form

$$u := \sigma (\mathrm{id}_{E^{\bullet}} - \bar{\partial}\sigma)^{-1} = \sigma + \sigma (\bar{\partial}\sigma) + \sigma (\bar{\partial}\sigma)^2 + \dots$$

• If ξ is acyclic, then for $e \in E_0$ a holomorphic section, the equation

$$(\phi - \bar{\partial})x = e$$

has a solution in $\oplus_{i=-N}^{-1} \Omega^{0,-i-1}(X, E_i)$ given by ue.

•
$$([\phi, u] - \bar{\partial}u)e = e$$

- The ∂-operator is locally exact.
- Locally on X we can find x̃ ∈ E₋₁ such that x̃ is holomorphic and φx̃ = e.
- u plays the role of $\frac{1}{f}$ before.

Almost semi-meromorphic and pseudomeromorphic currents

We follow [Andersson and Wulcan, 2010, Andersson and Wulcan, 2018].

- We can define almost semi-meromorphic currents on X, which generalize principal value currents [¹/₁].
- We can define **pseudomeromorphic** currents on *X*, which generalize residue currents $\bar{\partial}(\frac{1}{f_1}) \wedge \ldots \wedge \bar{\partial}(\frac{1}{f_m})$.
- We can extend *u* to a End(*E*•)-valued, almost semi-meromorphic current *U* on *X*.
- We can define a current [φ, U] − ∂U, which is a End(E[•])-valued, pseudomeromorphic current U on X.

・ 同 ト ・ ヨ ト ・ ヨ

Residue current of ξ

 The residue current R_ξ of the cochain complex ξ is an End(E[•])-valued, pseudomeromorphic current defined by

$$R_{\xi} := \mathsf{id}_{E^{\bullet}} - [\phi, U] + \bar{\partial} U.$$

- R_{ξ} measures how the cochain complex ξ fails to be acyclic.
- It is easy to see that when ξ is the complex $\underline{\mathbb{C}} \xrightarrow{f} \underline{\mathbb{C}}$, then R_{ξ} reduce to R_{f} .

< 回 > < 三 > < 三

- Let $R_{\xi}^{i \to j}$ denote the component of R_{ξ} that maps E_i to E_j .
- For a coherent sheaf \mathcal{F} , we define its **cycle** as the current

$$[\mathcal{F}] := \sum_{i} m_i[Z_i]$$

where Z_i is the irreducible component of the support of \mathcal{F} and m_i is the geometric multiplicity of Z_i in \mathcal{F} .

• We say \mathcal{F} has pure codimension p if supp \mathcal{F} has pure codimension p.

・ 🗇 ト ・ ヨ ト ・ ヨ

Duality principle and generalized Poincaré-Lelong

Theorem (Duality principle, [Andersson and Wulcan, 2007])

If ξ is acyclic on $X \setminus Z$, then for a holomorphic section e of E^0 , $R_{\xi}e = 0$ if and only if e can be locally written as ϕx where x is a holomorphic section of E_{-1} .

Theorem (Generalized Poincaré-Lelong formula,

[Lärkäng and Wulcan, 2021])

If ξ is a resolution of a coherent sheaf \mathcal{F} with pure codimension p. Then

$$\frac{1}{(2\pi i)^p p!} tr(D\phi_{-1}) \dots (D\phi_{-p}) R^{0 \to -p}_{\xi} = [\mathcal{F}].$$

where *D* is a connection on E^{\bullet} which is compatible with $\overline{\partial}$.

Question

What if \mathcal{F} does not have a locally free resolution on X?

• • • • • • • • • • • •

To be continued.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Residue currents with prescribed annihilator ideals.

Ann. Sci. École Norm. Sup. (4), 40(6):985–1007.

Decomposition of residue currents.

J. Reine Angew. Math., 638:103-118.

Andersson, M. and Wulcan, E. (2018).

Direct images of semi-meromorphic currents.

Ann. Inst. Fourier (Grenoble), 68(2):875–900.

Coleff, N. R. and Herrera, M. E. (1978).

Les courants résiduels associés à une forme méromorphe, volume 633 of Lecture Notes in Mathematics.

Springer, Berlin.

→ ∃ →

Dolbeault, P. (1971).

Courants résidus des formes semi-méromorphes.

In *Séminaire Pierre Lelong (Analyse) (année 1970)*, volume Vol. 205 of *Lecture Notes in Math.*, pages 56–70. Springer, Berlin-New York.

Residues and principal values on complex spaces.

Math. Ann., 194:259-294.

Lärkäng, R. and Wulcan, E. (2021).

Residue currents and cycles of complexes of vector bundles.

Ann. Fac. Sci. Toulouse Math. (6), 30(5):961-984.

伺 ト イ ヨ ト イ ヨ